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The principles of the thermodynamics of irreversible quasi-equilibrium 
processes are derived by means of the formalism of information theory. 
The quasi-equilibrium analogies of familiar thermostatic concepts are 
formulated. 

w176 Informat ion  formalismo The use of in format ion  
theory for the formula t ion  of equi l ib r ium s ta t i s t ica l  
the rmodynamics  was f i r s t  applied in [1, 2] and is known 
in the l i t e r a t u r e  as the Jaynes  fo rma l i sm .  This  ap-  
proach is supe r io r  to the t radi t ional  one in that for a 
closed formula t ion  and for the der iva t ion  of v i r tua l ly  
the en t i re  appara tus  of s ta t i s t ica l  thermodynamics  no 
use is made of the concept of phase space, or iginal  
theorems,  nor  of the postulates  of s ta t i s t ica l  mechan-  
ics,  while the very p rob lem of s ta t i s t ica l  thermody-  
namics  becomes a special  p rob lem among the others 
with incomplete  information.  In this c lass  of p rob lems  
with incomplete  s ta t i s t ica l  informat ion  we can also in-  
clude the p rob lem of descr ib ing  i r r e v e r s i b l e  quas i -  
equ i l ib r ium p roces ses .  

The subject  of the p r e sen t  paper  is the applicat ion 
of the informat ion  approach to the formula t ion  of the 
basic  s ta tements  in the the rmodynamics  of quas i - equ i -  
l i b r ium p roces se s ,  thus making it poss ib le  to introduce 
a number  of analogs of well-known concepts f rom equi-  
l i b r ium s ta t i s t i ca l  the rmodynamics  and to formulate  
the mathemat ica l  appara tus  cons t ructed  in the manne r  
of equi l ib r ium s ta t i s t ica l  thermodynamics .  This  appa- 
ra tus  opera tes  with concepts whose physical  s igni f i -  
cance is different  f rom the cor responding  equi l ib r ium 
analogs.  

For  comple teness ,  we will br ief ly  outl ine the in-  
format ion  fo rma l i sm ,  which should be defined more  
exactly as a s ta t i s t ica l  method of ana lys i s  that is based 
on p r e m i s e s  cor responding  to max imum entropy. 

Informat ion  as to the specific p rob lem under con- 
s idera t ion  is provided in the form of a set of known 
average values  o f ~  k for ce r ta in  random functions fk  
which depend on the d i sc re t e  random var iable  e i and, 
moreover ,  may poss ib ly  depend on one or more  ex- 
t e rna l  p a r a m e t e r s  a 

< L (~,  ~) > = ~ ,  (1) 

where <f>---~p](e~, a); {p~] is some d i sc re te  d i s -  
i 

t r ibut ion function which sa t i s f ies  the following r e q u i r e -  
ments :  

io The information entropy of the Shannon distribu- 

tion {Pi} 

S = - -  Z p~logpi (2) 
i 

exhibits the max imum poss ib le  value commensura te  
with the value of the known average quant i t ies  

p~ h = ~ (k = 1 - ra). 
i 

2. It sa t i s f ies  the normal iza t ion  condition 

~ p~ = 1. (3) 
i 

These r e q u i r e m e n t s  lead to the so-ca l led  canonical  
form of the d is t r ibut ion  function 

Pi = k , (4) 
Z({~k}) 

where the function of the parameters k k of the form 

is usual ly  identified as a s ta t i s t ica l  sum while the pa-  
r a m e t e r s  k k (k = 1 - m) themselves  are  introduced to 
account for the additional conditions in the form of Eq. 
(1). 

Choosing the d is t r ibut ion  function which cor responds  
to the max imum value of the Shannon entropy ensures  
that there will be no nonrandom informat ion  except that 
which is implicit in conditions (i) and forms the es- 
sence of the statistical analysis method applicable to 
any problem in which information is specified in this 
form. In addition to the above-cited papers by Jaynes, 
a detailed justification for the application of the infor- 

mation approach can be found in [3-6], while for con- 
venience in the remaining discussion we will note that 

from the formal mathematical standpoint all of the ex- 
pressions cited above, as well as all those which fol- 

low from their corollaries, are identical to the famil- 
iar formulas of the statistical thermodynamics of the 
equilibrium state [7], although their meaning may be 
entirely different, depending on the form of the prob- 

lem and the significance of the random functions. 

w The quas i - equ i l i b r i um approximation.  The in i -  
t im assumpt ion  of the quas i - equ i l i b r ium method in 
the theory of i r r e v e r s i b l e  p roces se s  involves the fact 
that in a state close to the equi l ibr ium,  but different  
f rom that state,  the average value of any random func-  
tion cha rac te r i z ing  the sys tem can be p resen ted  in the 
form of an expansion in moments  of d is t r ibut ion  for 
the cor responding  equi l ib r ium function. The expansion-  
sma l l ne s s  p a r a m e t e r  cha rac te r i zes  the degree of de - '  
viat ion f rom the state of equi l ibr ium,  and we can ne-  
glect  all  of the t e r ms  in the expansion higher than the 
l inear .  

We will denote the average value of the random func-  
tion in the nonequi l ibr ium state by ( f + ) ,  while the one 
in the equi l ib r ium state will be denoted by ( f ) .  We 
will denote the expansion p a r a m e t e r  by k +, and its 
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equilibrium value will be denoted by k, so that the qua- 
si-equilibrium approximation of the nonequilibrium 
average value is given by 

and 

<f+> =i<f+>l.=~+0,+_~0 fd/}+> ] 
L ~ J - , = ~ "  (6) 

It is  c l e a r  that 

[ <f+ ]~+=x = ( f > (7) 

i 
d<f+> -[ a<f> 
~ j ~ + = ~ =  d~ 

( s )  

If we s imul t aneous ly  cons ide r  s e v e r a l  nonequi l ib-  
r i um funct ions c h a r a c t e r i z i n g  the sy s t em {f~}, the 
expansion is na tu ra l ly  g e n e r a l i z e d  as  follows: 

<:k > <:k) + Z (  ~+ 
O<f~ > * : ~l - -  ~l) , (9) 

where  the s u b s c r i p t s  t and k extend over  ident ica l  se t  
of values~ 

We will  t r e a t  r e l a t ionsh ip  (9) as  al l  of the ava i lab le  
in format ion  with r e g a r d  to some nonequi l ib r ium p r o -  
cess ;  in the q u a s i - e q u i l i b r i u m  approx imat ion  the in-  
fo rma t ion  r e g a r d i n g  the ave r age  value of the nonequi l ib-  

< + r ium quanti ty fk}  is thus equivalent  to the informat ion  
with r e s p e c t  to i ts  ave rage  value (fk} in equ i l ib r ium,  
and i t  is  a lso  equivalent  to the informat ion  about 
the v a r i a n c e  and c o r r e l a t i o n  of the random funct ions,  
s ince  the d e r i v a t i v e s  in (9) under  the summat ion  sign 
have p r e c i s e l y  this s t a t i s t i c a l  s ign i f icance  [3], 

O<fk) _<fkL>_<f~> <f~>, (i0) 
c~),t 

0 < fk ) < f~ }--  < }k }', (11) 

and, moreover, the information about the values of 
the parameters X~ and k k. 

It is then possible to formulate the problem of de- 
scribing the nonequilibrium steady state from the po- 
sition of information formalism: to find the nonequi- 
librium distribution function {p+} which satisfies the 
known information (9) and guarantees the absence of 
any other additional assumptions, nonrandom in nature. 

The solution of this problem is possible with the 
aid of the formal entropy logic indicated in w Indeed, 
the problem pertains precisely to the class described 
there :  there  a r e  c e r t a i n  a v e r a g e s  of <f~} with r e g a r d  
to which we know that  they a r e  equal to the equ i l ib r ium 
analogs  of (fk>, p lus  c e r t a i n  addi t ions  p ropor t iona l  to 
the v a r i a n c e s  and c o r r e l a t i o n s  of the co r r e spond ing  
quant i t ies .  

The ana lys i s  method based  on the max imiza t ion  of 
en t ropy l eads  i m m e d i a t e l y  to the conclusion that the 
nonequi l ib r ium d i s t r ibu t ion  function i s  again of canon-  
ical  form:  

exp [ - - Z  A J :  (e,, a)] 
p~. = k , (12) 

Z+([A~}) 

where  A k is  the Lagrange  mu l t i p l i e r  by means  of which 
we take into cons ide ra t ion  the known informat ion  in 
the fo rm of (9), while  Z + is  a nonequi l ib r ium s t a t i s t i c a l  
sum which is a function of these  Lag range  p a r a m e t e r s .  

Let  us find the r e l a t ionsh ip  between the p a r a m e -  
t e r s  A k with the expans ion  p a r a m e t e r s  ~ - k k. F o r  
this  we will  expand the a ve r a ge  value of the random 
function fk - -we igh ted  with r e s p e c t  to the nonequi l ib r ium 
d i s t r ibu t ion  (12)--in the p a r a m e t e r s  A k, a s s u m i n g  
these  to be in f in i t e s ima l s :  

<r; > =[<r; >]~=0+ 

+ ~ i l [ ( 1 / Z  +) ~ f ~  ( - - f ~ ) •  
l i 

x exp [ - -  Z Ak f: ~ IA-o + . . . .  
k 

= [ <f; ~ ]~=0+ 

+~A~[ < f; ~ <~; : - <  f~+i?}]A=0. (9,) 
l 

We can t he r e fo re  a s s u m e  that ( compare  (9*) with 
(9)) 

Ak : )~ -- )~k' (13) 

F o r  the r e m a i n d e r  of the d i s cus s ion  we will  a l so  
need a number  of r e l a t i onsh ip s  which a s s o c i a t e  the 
above-; introduced c h a r a c t e r i s t i c s  and whose va l id i ty  
is  e a s i l y  p roved  d i r ec t l y ,  using the def ini t ions  of (1), 
(2), (4), and (5): 

< f~ ) = Ol~ , (14) 
0 A~ 

0S+({ ( fi } }) (15) 
Ak = 0 < f+ > , 

0<:;> = 0<:;> (16) 
) 

0 Al O A k 

S+(( ( f; > }) = Z+({A~}) + ~ Ak < f+ )  (17) 
k 

(the Lag range  t r ans fo rm) .  
With the random functions dependent  on the com-  

mon p a r a m e t e r  a ,  the s t a t i s t i c a l  sum a lso  becomes  
a function of that p a r a m e t e r ,  

Z§ c 0 = ~ exp [ _ ~  A4f~ (e i, a)],  
t k 

(18) 

while the logarithmic derivative with respect to this 
parameter is given by 

OIogZ+({Ak};(a) ~ ,  A_ / Of~ \ (19) 
0a "7* ~ \ ~ / '  

The de r iva t ive  of the ent ropy with r e s p e c t  to the ex-  
t e rna l  p a r a m e t e r  c~, in view of the imp l i c i t  r e l a t i o n -  
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ship, is given by 

dS({ < f~ (~, ~) > }) = 

da 

as + a < f i  > 
a< /+  > a~ 

a < f ;  > 
= ~_~ A~ aa "" 

k 

w Microscopic  r eve r s ib i l i t y .  In addition to the 
or iginal  assumpt ion  of (9) with regard  to the form of 
the average values for the nonequi l ib r ium functions,  
the f ami l i a r  p r inc ip le  of mic roscop ic  r eve r s ib i l i t y  
[8, 9] is employed in the method of quas i - equ i l i b r ium 
thermodynamics  for the der iva t ion  of the Onsager  sym-  
m e t r y  re la t ionsh ips .  Let us examine the ro le  of this 
p r inc ip le  in the in format ion  approach. 

The pr inc ip le  of mic roscop ic  r eve r s ib i l i t y  p re sup -  
poses that any sequence of events  (the values of r a n -  
dom functions),  defined on an equ i l ib r ium ensemble ,  
and occur r ing  in forward t ime,  has a l ready occur red  
s y m m e t r i c a l l y  in r e v e r s e  t ime. 

This  pr inc ip le  can be expressed  mathemat ica l ly  by 
the equality 

f~ (t) < fi (t + ~) > = f~ (t) < fl (t - - '0  > , (20) 

wheref i ( t )  is the value of some random function at an 
a r b i t r a r i l y  chosen ins tant  t, while the averaging ( . . .>,  
genera l ly  speaking, of some other random func t ionf j  
is ca r r i ed  out over all  ins tants  t in whichfi( t )  is equal 
to the chosen fixed value o f f i .  

F o r  the purposes  of the the rmodynamics  of the qua- 
s i - e q u i l i b r i u m  state,  the pr inc ip le  of microscopic  
r e v e r s i b i l i t y  is usual ly  employed in a cons iderab ly  
weaker  form, and namely ,  in the average  sense  [8] of 

< f~(t).fi(t + ~) > = < f~ ( t ) . f i ( t _ .  0 >, (21) 

where the averaging  is accomplished over all  t imes  t, 
r a the r  than over the selected ins tants  t for which 

:i(t) = 7 i .  
Bear ing  in mind the s tead iness  of the random func-  

t ions,  we can shift the t ime or igin  by T, for example,  
in the r igh t -hand  port ion of (21), and this will yield 

< ft (t) fl (t + T) > = < f~ (t + ~) fi (t) }. (22) 

Subtract ing ( f i ( t ) f j ( t ) ) f r o m  both m e m b e r s ,  dividing 
by ~-, and a s suming  the exis tence  of an average l imi t  

/ lira f ( t + ~ ) - - f ( t ) \ = / a f \  (23) 
\ ,-~o �9 / \ a t / '  

we obtain the following fo rm for the express ion  of the 
p r inc ip le  of mic roscop ic  r e v e r s i b i l i t y  in the average 
sense:  

/ f,(t) o:,(t) > = < :i(t) >. \ at at 

The pr inc ip le  of mic roscop ic  r e v e r s i b i l i t y  can also 
be formula ted  in s i m i l a r  fashion in a r igorous  sense.  
Its express ion  under  the assumpt ion  of (23) has the 

following form: 

<(fi ( t ) -  <f~ (t)))(aflat(t) < afiat(t) > ) >  = 

= < (fj (t) - -  < f: (t) > ) ( ahat(O 
\ at 

Up to this point we have not introduced the concept 
of t ime in the descr ip t ion  of informat ion formal ism~ 
This  concept is conveniently introduced into the con-  
s idera t ion  as a genera l  external  pa r a me t e r  of the r a n -  
dom functions a -  t (in analogy with the introduct ion of 
the volume p a r a m e t e r  V in thermosta t ics) .  

Thus all of the random functions with the exception 
of the dependence on the random d i sc re te  var iable  e i 
will  now also be a function of the genera l  t ime p a r a m e -  
ter  it). With (19) we immedia te ly  der ive  the r e l a t i on -  
ship between the average values of the veloci t ies  and 
the s ta t i s t ica l  sum 

alog.Z + _ V A / af~ \ (25) 
ot 

If we are  in te res ted  in a cer ta in  average value for 
the ra te  of change in the nonequi l ib r ium func t ion f~ ,  
this can be found with (25) for a known s ta t i s t ica l  sum 
in the form 

/ af~ \ _ O21ogZ § (26) 
\ T /  O A~ at 

On the other hand, f rom (14) we can obtain an ex- 
p r e s s i o n  for the mixed der ivat ive  of the logar i thm of 
the s ta t i s t ica l  sum, with an inverse  sequence on the 
o rder  of different ia t ion,  

a 2 log z § a ( f~ > 
- -  (27) 

ato A k at ' 

and as shown by a compar i son  of (26) and (27), the 
second mixed der iva t ives  of log Z + with a different  
o rder  of different iat ion exhibit different s ta t i s t ica l  
sense.  Let us find this difference.  For  this we will 
examine the s t ruc tu re  of the ra te  of change in the ave r -  
age value: 

a( f ;  > _ a ~ p~ (t)f~ (e,, t ) =  
at at z.a 

i .  

at; OR: 
i i 

- ot dt 
i 

Thus the difference between the ra te  of change in ' 
the average  value and the average value for the ra te  of 
change in the random funct ions is associa ted with the 
impl ic i t  re la t ionship  between the d i s t r ibu t ion  p+(t) and 
t ime: 

O < f~ ) / 8f~ \ dp; (29) 
at \ - - Z i - / =  V f+k 

, i  
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Simple  ca lcula t ion  shows that 

dt -- Pz Ai  0--7-- - -  \ Ot . (30) 

Subst i tut ion of (30) into (29) y ie lds  an exp re s s ion  
for  the d i f fe rence  under  cons idera t ion :  

a < f; > / of; \ 
at \ - 3 T -  / = 

art 
l i 

+ VA,  ~p~f;/at+~ \ =  
z~ \ Ot / 

l i 

at / - - \ f ~ / \  at / j  

= - -  E Al < (f~ - -  < f~ > ) x  
l 

\ / ]  x [--5U at > .  (31) 

The r e q u i r e m e n t  of equal i ty  for the mixed  second 
de r iva t i ve s  of l ogZ+- -which  fol lows f rom the defini t ion 
of the s t a t i s t i c a l  sum as a function of s t a t e - - n a t u r a l l y  
l eads  to the p r inc ip le  of m i c r o s c o p i c  r e v e r s i b i l i t y  in 
the r i g o r o u s  sense .  

w The l i nea r  law. Let  us analyze  the p r o b l e m  of 
the l i nea r  r e l a t ionsh ip  between flows and t he rmody-  
namic  forces ;  this  r e l a t ionsh ip  is  a l so  one of the pos tu -  
l a tes  of q u a s i - e q u i l i b r i u m  the rmodynamics .  I t  tu rns  
out in our examinat ion  that the l i nea r  r e l a t ionsh ip  is  a 
consequence of one of two pos s ib l e  a ssumpt ions .  

In the f i r s t  a s sumpt ion  

0 + / f, \ \ - - ~ - - /  = 0. (32) 

F r o m  Eq. (31) we then au tomat i ca l ly  have the l i n -  
e a r  law re l a t ing  the flow with force :  

a < t; > _ .,~V A , / t ~  at~ _ \  (33) 
at \ Ot / l 

with the phenomenologiea l  coef f ic ients  

Lt~ ( t; af7 \ (34) 
= - 0 - 7 - / '  

satisfying the symmetry relationships in view of the 
microscopic reversibility in the average sense of (21). 

The second assumption--also leading to a linear re-  
lationship between flow and f o r c e - - r e d u c e s  to the equa-  
t ion 

of; / \ 
A~ < fk \ (35) 

\ - - 3 ~  / = - + ~ ~,,- at / "  
l 

Subst i tut ion of (35) into (20) i m m e d i a t e l y  y ie lds  the 
l i nea r  law (33) with the s ame  phenomenologica l  coef f i -  
c ien ts .  

En t ry  into the non l inear  r eg ion  [10] is  obviously  
a s soc i a t e d  with the r e j ec t i on  of such a s sumpt ions  as  
(32) or  (35), as  well  as  with the viola t ion of the p r i n c i -  
p le  of m i c r o s c o p i c  r e v e r s i b i l i t y  (31). Th is  i n t e r e s t i ng  
a r e a  goes beyond the f r a m e w o r k  of the bas ic  a s s u m p -  
t ions which we have employed  and r e q u i r e s  p a r t i c u l a r  
inves t igat ion.  It is  to be hoped that the in format ion  ap-  
p roach  will  a l so  p rov ide  this  f ie ld  with the c h a r a c t e r -  
i s t i c  c l a r i t y  of the or ig in  p r e m i s e s  and ease  in ach iev -  
ing concre te  r e s u l t s .  
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