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The principles of the thermodynamics of irreversible quasi-equilibrium
processes are derived by means of the formalism of information theory.
The quasi-equilibrium analogies of familiar thermostatic concepts are
formulated.

.81, Tnformation formalism. The use of information
theory for the formulation of equilibrium statistical
thermodynamics was first applied in [1, 2] andisknown
in the literature as the Jaynes formalism. This ap-
proach is superior to the traditional one in that for a
closed formulation and for the derivation of virtually
the entire apparatus of statistical thermodynamics no
use is made of the concept of phase space, original
theorems, nor of the postulates of statistical mechan-
ics, while the very problem of statistical thermody-
namics becomes a special problem among the others
with incomplete information. In this class of problems
with incomplete statistical information we can also in-
clude the problem of describing irreversible quasi-
equilibrium processes.

The subject of the present paper is the application
of the information approach to the formulation of the
basic statements in the thermodynamics of quasi-equi-
librium processes, thusmaking it possible to introduce
a number of analogs of well-known concepts from equi-
librium statistical thermodynamics and to formulate
the mathematical apparatus constructed in the manner
of equilibrium statistical thermodynamics. This appa-
ratus operates with concepts whose physical signifi-
cance is different from the corresponding equilibrium
analogs.

For completeness, we will briefly outline the in-
formation formalism, which should be defined more
exactly as a statistical method of analysis that is based
on premises corresponding to maximum entropy.

Information as to the specific problem under con-
sideration is provided in the form of a set of known
average values of}‘—k for certain random functions fj
which depend on the discrete random variable &; and,
moreover, may possibly depend on one or more ex-
ternal parameters o :

(Feler, 0)) = F (1
where (f) 22 pifb(s[, a), {p;] 1is some discrete dis-

£
tribution function which satisfies the following require-
ments:
1. The information entropy of the Shannon distribu-

tion {pi}
S=——2 p;logp; (2)

exhibits the maximum possible value commensurate
with the value of the known average quantities
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2. It satisfies the normalization condition
2 pi=1 (3)

i
These requirements lead to the so-called canonical
form of the distribution function

exp {—§ WACE]

p= . , (4)
Z (1)

where the function of the parameters Ay of the form

Z(h) = X exp [ b e ) (5)
is usually identified as a statistical sum while the pa-
rameters A (k = 1 — m) themselves are introduced to
account for the additional conditions in the form of Eq.
(1).

Choosing the distribution function which corresponds
to the maximum value of the Shannon entropy ensures
that there will be no nonrandom information exceptthat
which is implicit in conditions (1) and forms the es-
sence of the statistical analysis method applicable to
any problem in which information is specified in this
form. In addition to the above-cited papers by Jaynes,
a detailed justification for the application of the infor-
mation approach can be found in [3—6], while for con-
venience in the remaining discussion we will note that
from the formal mathematical standpoint all of the ex-
pressions cited above, as well as all those which fol-
low from their corollaries, are identical to the famil-
iar formulas of the statistical thermodynamics of the
equilibrium state [7], although their meaning may be
entirely different, depending on the form of the prob-
lem and the significance of the random functions. '

§2. The quasi-equilibrium approximation. The ini~
tial assumption of the quasi-equilibrium method in
the theory of irreversible processes involves the fact
that in a state close to the equilibrium, but different
from that state, the average value of any random func-
tion characterizing the system can be presented in the
form of an expansion in moments of distribution for
the corresponding equilibrium function. The expansion-
smallness parameter characterizes the degree of de--
viation from the state of equilibrium, and we can ne~
glect all of the terms in the expansion higher than the
linear.

We will denote the average value of the random func-
tion in the nonequilibrium state by {f¥), while the one
in the equilibrium state will be denoted by {f). We
will denote the expansion parameter by A%, and its
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equilibrium value will be denoted by A, so that the qua-
si-equilibrium approximation of the nonequilibrium

average value is given by
N N a<f*y
=[P by + (A —2) | 28 .
P =1 s+ ( )[ L L:x ©

1t is clear that

(<D b = (F> (1)
and
[d<f+>J _ alf> ) (8)
drt b= d

If we simultaneously consider several nonequilib-
rium functions characterizing the system {fﬁ}, the
expansion is naturally generalized as follows:

o= o+ Mg Bl
; oM,
where the subscripts I and k extend over identical set
of values.

We will treat relationship (9) as all of the available
information with regard to some nonequilibrium pro-
cess; in the quasi-equilibrium approximation the in-
formation regarding the average value of the nonequilib-
rium quantity { £ ﬂ) is thus equivalent to the information
with respect to its average value <fk> in equilibrium,
and it is also equivalent to the information about
the variance and correlation of the random functions,
since the derivatives in (9) under the summation sign
have precisely this statistical significance [3],

T2~ iy —=<Fey <hid s (10)
o\
OT) o iron gy
o= oot (1

and, moreover, the information about the values of
the parameters ?\E and Ag.

It is then possible to formulate the problem of de-
scribing the nonequilibrium steady state from the po-
sition of information formalism: to find the nonequi-
librium distribution function {p}} which satisfies the
known information (9) and guarantees the absence of
any other additional assumptions, nonrandom in nature.

The solution of this problem is possible with the
aid of the formal entropy logic indicated in §1. Indeed,
the problem pertains precisely to the class described
there: there are certain averages of {f{) with regard
to which we know that they are equal to the equilibrium
analogs of (fj), plus certain additions proportional to
the variances and correlations of the corresponding
quantities.

The analysis method based on the maximization of
entropy leads immediately to the conclusion that the
nonequilibrium distribution function is again of canon-
ical form:

exp [ E Aufi (s a)] s)
= : 12
& Z ()
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where Ay is the Lagrange multiplier by means of which
we take into consideration the known information in
the form of (9), while Z¥ is a nonequilibrium statistical
sum which is a function of these Lagrange parameters.

Let us find the relationship between the parame-~
ters Ay with the expansion parameters hﬁ - M. For
this we will expand the average value of the random
function fi.—weighted with respect to the nonequilibrium
distribution (12)—in the parameters Ay, assuming
these to be infinitesimals:

By =< Jamo +

S R T
+§A,[(uz+> 2f (=
~§AJZHA=O+

=[<fe>

fi)x
x exp |

Jamo +
+ 2N R R L (99)
We can therefore assume that (compare (9*) with

(9))
Ap=hp —hy. (13)

For the remainder of the discussion we will also
need a number of relationships which associate the
above-introduced characteristics and whose validity
is easily proved directly, using the definitions of (1),
(2), (4), and (5):

olog Z* ({A,})

{fe >=— oA, , (14)
_ St
T e (15)
afr > 9 fl >
SA = A (16)
SR YD =Z (1A + D A <FED (17)
E

(the Lagrange transform).

With the random functions dependent on the com~
mon parameter «, the statistical sum also becomes
a function of that parameter,

) = 21 exp [_2 A Fh (&5 a)], (18)
®

while the logarithmic derivative with respect to this
parameter is given by

dlog Z+((A, )
._._.*—‘_ A
- -Xal

Z((Ash

afk \ (19)

The derivative of the entropy with respect to the ex-
ternal parameter «, in view of the implicit relation-
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ship, is given by

dS(<fr (ep 01> ) _
da

=) 98t A(fi
O da

=X,

§3. Microscopic reversibility. In addition to the
original assumption of (9) with regard to the form of
the average values for the nonequilibrium functions,
the familiar principle of microscopic reversibility
[8, 9] is employed in the method of quasi-equilibrium
thermodynamics for the derivation of the Onsager sym-
metry relationships. Let us examine the role of this
principle in the information approach.

The principle of microscopic reversibility presup-
poses that any sequence of events (the values of ran~
dom functions), defined on an equilibrium ensemble,
and occurring in forward time, has already occurred
symmetrically in reverse time,

This principle can be expressed mathematically by
the equality

RO HE+D) =L (fit—))

a<fk )

(20)

where f;(t) is the value of some random function at an
arbitrarily chosen instant t, while the averaging (...),
generally speaking, of some other random function f]-
is carried out over all instants t in which fj(t) is equal
to the chosen fixed value of f;.

For the purposes of the thermodynamics of the gua-
si~equilibrium state, the principle of microscopic
reversibility is usually employed in a considerably
weaker form, and namely, in the average sense [8] of

CRO-FE+D) = CFOFE—1)) (21)

where the averaging is accomplished over all times ¢,
rather*_than over the selected instants t for which
fl(t) =fi'

Bearing in mind the steadiness of the random func-
tions, we can shift the time origin by r, for example,
in the right-hand portion of (21), and this will yield

OFE+0) =< E+0HO ) - (22)

Subtracting ( fi(t) f (t)) from both members, dividing
by 7, and assumlng the existence of an average limit

S FEED—FON O 03

~ 1:113 T 7 \ ot/ (23)
we obtain the following form for the expression of the
principle of microscopic reversibility in the average
sense:

) _
R —E=> =@ (24)

o)
o0 7
The principle of microscopic reversibility can also

be formulated in similar fashion in a rigorous sense.
Its expression under the assumption of (23) has the
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following form:
(s (t)~<f,<t>>>( ho_ ¢ "”:;‘t("‘) >)> _
=<(fj()—<f,<f>>)( ARl _ afét(f) >)>. (24%)

Up to this point we have not introduced the concept
of time in the description of information formalism.
This concept is conveniently introduced into the con-
sideration as a general external parameter of the ran-
dom functions a= ¢ (in analogy with the introduction of
the volume parameter V in thermostatics).

Thus all of the random functions with the exception
of the dependence on the random discrete variable &;
will now also be a function of the general time parame-
ter (t)., With (19) we immediately derive the relation~
ship between the average values of the velocities and
the statistical sum

ologZ* _ AN
WY (25)
k

ot N at

If we are interested in a certain average value for
the rate of change in the nonequilibrium functionfﬁ,
this can be found with (25) for a known statistical sum
in the form

?log Z*
OA,0t

VAN

Nor /T (26)

On the other hand, from (14) we can obtain an ex-
pression for the mixed derivative of the logarithm of
the statistical sum, with an inverse sequence on the
order of differentiation,

0logZ* A (fi >
D i Tk (27)

and as shown by a comparison of (26) and (27), the
second mixed derivatives of log Z1 with a different
order of differentiation exhibit different statistical
sense. Let us find this difference. For this we will
examine the structure of the rate of change in the aver-
age value:

dfe 9
___(a};k—>_ == 2 piOF & 1) =

- X!

=\ at /+Efk

(28)

Thus the difference between the rate of change in °
the average value and the average value for the rate of
change in the random functions is associated with the
implicit relationship between the distribution pf(t) and
time:

a(fi> VAN Vf-* dpt

_ - 4 (29)
at N o / ami 'k T
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Simple calculation shows that
dp; : o of
[ p, : — L
ar pi 21 A'[ a N /] (30

Substitution of (30) into (29) yields an expression
for the difference under consideration:

oty > ol
ot TN ST

=alEA,Z[p;f;: af;;

f

— YA =i ox
l

X(Eﬁ_ /if_;__\)>_

a ) (31)

The requirement of equality for the mixed second
derivatives of logZ*~which follows from the definition
of the statistical sum as a function of state—naturally
leads to the principle of microscopic reversibility in
the rigorous sense.

§4. The linear law. Let us analyze the problem of
the linear relationship between flows and thermody-
namic forces; this relationship is also one of the postu-
lates of quasi-equilibrium thermodynamics. It turns
out in our examination that the linear relationship is a
consequence of one of two possible assumptions.

In the first assumption

VAN

/= 0. (32)

From Eqg. (31) we then automatically have the lin-
ear law relating the flow with force:

3 (i

5 (33)

R SCHEN
“_I-JA’/f at/

with the phenomenological coefficients
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off N\
ot /7

satisfying the symmetry relationships in view of the

microscopic reversibility in the average sense of (21).
The second assumption—also leading to a linear re-

lationship between flow and force—reduces to the equa-

tion
f+
2 Al<f+ \ at

Substitution of (35) into (20) immediately yields the
linear law (33) with the same phenomenological coeffi-
cients.

Entry into the nonlinear region [10] is obviously
associated with the rejection of such assumptions as
(32) or (35), as well as with the violation of the princi-
ple of microscopic reversibility (31). This interesting
area goes beyond the framework of the basic assump-
tions which we have employed and requires particular
investigation, It is to be hoped that the information ap-
proach will also provide this field with the character-
istic clarity of the origin premises and ease in achiev-
ing concrete results.

le AN f+ (34)

VAN

N /=~ (35)

REFERENCES

1. E. T. Jaynes, Phys. Rev.,, 106, 620, 1957.

2. E. T. Jaynes, Phys. Rev,, 108, 171, 1957.

3. E. T. Jaynes, Information Theory and Statistical
Mechanics, Notes by the lecturer, Washington Univer-
sity, 1964.

4, M. J. Tribus, Appl. Mech., March, 1961.

5. A. Katz, Il. Nuovo Cimento XXXIII, no. 6, 1544,
1964,

6. A. Katz, Il. Nuovo Cimento XXXIII, no. 6, 1553,
1964,

7. E. Schredinger, Statistical Thermodynamics,
Cambridge, 1946,

8. J. C. M. Li, J. Chem. Phys., 29, no. 4, 1958.

9. L. Onsager, Phys. Rev., 37, 405; 38, 2265,
1931.

10. Th. A, Bak, Advances in Chemical Physics,
vol. III. (ed. Prigogine), New York,
5 June 1967 Institute of Applied Mathe-
matics AS USSR, Moscow



